An Accurate Genomic Island Prediction Method for Sequenced Bacterial and Archaeal Genomes

نویسندگان

  • Dongsheng Che
  • Han Wang
  • John Fazekas
  • Bernard Chen
چکیده

A genomic island (GI) is a genomic segment in a host genome, and it was transferred from donor genomes. Since genomic islands (GIs) usually contain important genes such as pathogenicity genes, the detection of GIs becomes extremely critical to medical research and industrial applications. Previous computational GI detection tools used one or a few GI-associate features, and thus they suffered the problem of low prediction accuracy. A systematic approach that uses multiple sources to improve GI prediction accuracy, therefore, is in great demand. In this paper, we report the development of Genomic Island Hunter (GIHunter), an accurate software tool for GI detection. GIHunter is a decision tree based bagging model that uses eight GI-associated features such as sequence composition, mobile gene information, and integrase. The performance metric comparison between our approach and other current existing GI prediction methods has shown that our approach is more accurate than other approaches. We have used GIHunter to predict GIs in more than 2000 prokaryotic genomes. We have also visualized our predicted GIs so that our predicted results become useful and meaningful for biomedical studies. Our GI program GIHunter can be obtained at: http://www.esu.edu/cpsc/che_lab/software/GIHunter. Our GI prediction results are available on our genomic islands database, which is: http://www5.esu.edu/cpsc/bioinfo/dgi. An Accurate Genomic Island Prediction Method for Sequenced Bacterial and Archaeal Genomes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis

Prediction of orthologs (homologous genes that diverged because of speciation) is an integral component of many comparative genomics methods. Although orthologs are more likely to have similar function versus paralogs (genes that diverged because of duplication), recent studies have shown that their degree of functional conservation is variable. Also, there are inherent problems with several la...

متن کامل

OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences

Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation Sy...

متن کامل

IslandViewer update: improved genomic island discovery and visualization

IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a web-accessible application for the computational prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin and are of high interest because they disproportionately encode virulence factors and other adaptations of medical, environmental and industrial in...

متن کامل

Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes

DNA replication is one of the most basic processes in all three domains of cellular life. With the advent of the post-genomic era, the increasing number of complete archaeal genomes has created an opportunity for exploration of the molecular mechanisms for initiating cellular DNA replication by in vivo experiments as well as in silico analysis. However, the location of replication origins (oriC...

متن کامل

A computational approach to identify genes for functional RNAs in genomic sequences.

Currently there is no successful computational approach for identification of genes encoding novel functional RNAs (fRNAs) in genomic sequences. We have developed a machine learning approach using neural networks and support vector machines to extract common features among known RNAs for prediction of new RNA genes in the unannotated regions of prokaryotic and archaeal genomes. The Escherichia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014